Large-scale parallel data clustering
نویسندگان
چکیده
Algorithmic enhancements are described that enable large computational reduction in mean square-error data clustering. These improvements are incorporated into a parallel data-clustering tool, P-CLUSTER, designed to execute on a network of workstations. Experiments involving the unsupervised segmentation of standard texture images were performed. For some data sets, a 96 percent reduction in computation was achieved.
منابع مشابه
خوشهبندی دادهها بر پایه شناسایی کلید
Clustering has been one of the main building blocks in the fields of machine learning and computer vision. Given a pair-wise distance measure, it is challenging to find a proper way to identify a subset of representative exemplars and its associated cluster structures. Recent trend on big data analysis poses a more demanding requirement on new clustering algorithm to be both scalable and accura...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملParallel K-Means Clustering Based on MapReduce
Data clustering has been received considerable attention in many applications, such as data mining, document retrieval, image segmentation and pattern classification. The enlarging volumes of information emerging by the progress of technology, makes clustering of very large scale of data a challenging task. In order to deal with the problem, many researchers try to design efficient parallel clu...
متن کاملتجمع بیماری در مقیاسی وسیع و کاربرد آن در مطالعات اپیدمیولوژی و بهداشت
Spatial autocorrelation statistics provide summary information about the spatial arrangement of data in a map. In fact, these statistics compare neighboring area values in order to assess the level of large scale clustering. Whenever a large number of neighboring areas have either relatively large or relatively small values, large scale clustering may be detected. Detecting such clustering is a...
متن کاملParallel D2-Clustering: Large-Scale Clustering of Discrete Distributions
The discrete distribution clustering algorithm, namely D2-clustering, has demonstrated its usefulness in image classification and annotation where each object is represented by a bag of weighed vectors. The high computational complexity of the algorithm, however, limits its applications to large-scale problems. We present a parallel D2-clustering algorithm with substantially improved scalabilit...
متن کامل